Review Articles|18 Article(s)
Recent progress on structural coloration
Yingjie Li, Jingtian Hu, Yixuan Zeng, Qinghai Song, Cheng-Wei Qiu, and Shumin Xiao
Structural coloration generates colors by the interaction between incident light and micro- or nano-scale structures. It has received tremendous interest for decades, due to advantages including robustness against bleaching and environmentally friendly properties (compared with conventional pigments and dyes). As a versatile coloration strategy, the tuning of structural colors based on micro- and nanoscale photonic structures has been extensively explored and can enable a broad range of applications including displays, anti-counterfeiting, and coating. However, scholarly research on structural colors has had limited impact on commercial products because of their disadvantages in cost, scalability, and fabrication. In this review, we analyze the key challenges and opportunities in the development of structural colors. We first summarize the fundamental mechanisms and design strategies for structural colors while reviewing the recent progress in realizing dynamic structural coloration. The promising potential applications including optical information processing and displays are also discussed while elucidating the most prominent challenges that prevent them from translating into technologies on the market. Finally, we address the new opportunities that are underexplored by the structural coloration community but can be achieved through multidisciplinary research within the emerging research areas.
Photonics Insights
  • Publication Date: Apr. 22, 2024
  • Vol. 3, Issue 2, R03 (2024)
Optical microfiber or nanofiber: a miniature fiber-optic platform for nanophotonics
Jianbin Zhang, Hubiao Fang, Pan Wang, Wei Fang, Lei Zhang, Xin Guo, and Limin Tong
An optical micro/nanofiber (MNF) is a quasi-one-dimensional free-standing optical waveguide with a diameter close to or less than the vacuum wavelength of light. Combining the tiny geometry with high-refractive-index contrast between the core and the surrounding, the MNF exhibits favorable optical properties such as tight optical confinement, strong evanescent field, and large-diameter-dependent waveguide dispersion. Meanwhile, as a quasi-one-dimensional structure with extraordinarily high geometric and structural uniformity, the MNF also has low optical loss and high mechanical strength, making it favorable for manipulating light on the micro/nanoscale with high flexibility. Over the past two decades, optical MNFs, typically being operated in single mode, have been emerging as a miniaturized fiber-optic platform for both scientific research and technological applications. In this paper, we aim to provide a comprehensive overview of the representative advances in optical MNFs in recent years. Starting from the basic structures and fabrication techniques of the optical MNFs, we highlight linear and nonlinear optical and mechanical properties of the MNFs. Then, we introduce typical applications of optical MNFs from near-field optics, passive optical components, optical sensors, and optomechanics to fiber lasers and atom optics. Finally, we give a brief summary of the current status of MNF optics and technology, and provide an outlook into future challenges and opportunities.
Photonics Insights
  • Publication Date: Mar. 01, 2024
  • Vol. 3, Issue 1, R02 (2024)
Optical bound states in the continuum in periodic structures: mechanisms, effects, and applications|Story Video , On the Cover
Jiajun Wang, Peishen Li, Xingqi Zhao, Zhiyuan Qian, Xinhao Wang, Feifan Wang, Xinyi Zhou, Dezhuan Han, Chao Peng, Lei Shi, and Jian Zi
Optical bound states in the continuum (BICs) have recently stimulated a research boom, accompanied by demonstrations of abundant exotic phenomena and applications. With ultrahigh quality (Q) factors, optical BICs have powerful abilities to trap light in optical structures from the continuum of propagation waves in free space. Besides the high Q factors enabled by the confined properties, many hidden topological characteristics were discovered in optical BICs. Especially in periodic structures with well-defined wave vectors, optical BICs were discovered to carry topological charges in momentum space, underlying many unique physical properties. Both high Q factors and topological vortex configurations in momentum space enabled by BICs bring new degrees of freedom to modulate light. BICs have enabled many novel discoveries in light–matter interactions and spin–orbit interactions of light, and BIC applications in lasing and sensing have also been well explored with many advantages. In this paper, we review recent developments of optical BICs in periodic structures, including the physical mechanisms of BICs, explored effects enabled by BICs, and applications of BICs. In the outlook part, we provide a perspective on future developments for BICs.
Photonics Insights
  • Publication Date: Feb. 26, 2024
  • Vol. 3, Issue 1, R01 (2024)
Diffractive optical elements 75 years on: from micro-optics to metasurfaces|Story Video , On the Cover
Qiang Zhang, Zehao He, Zhenwei Xie, Qiaofeng Tan, Yunlong Sheng, Guofan Jin, Liangcai Cao, and Xiaocong Yuan
Diffractive optical elements (DOEs) are intricately designed devices with the purpose of manipulating light fields by precisely modifying their wavefronts. The concept of DOEs has its origins dating back to 1948 when D. Gabor first introduced holography. Subsequently, researchers introduced binary optical elements (BOEs), including computer-generated holograms (CGHs), as a distinct category within the realm of DOEs. This was the first revolution in optical devices. The next major breakthrough in light field manipulation occurred during the early 21st century, marked by the advent of metamaterials and metasurfaces. Metasurfaces are particularly appealing due to their ultra-thin, ultra-compact properties and their capacity to exert precise control over virtually every aspect of light fields, including amplitude, phase, polarization, wavelength/frequency, angular momentum, etc. The advancement of light field manipulation with micro/nano-structures has also enabled various applications in fields such as information acquisition, transmission, storage, processing, and display. In this review, we cover the fundamental science, cutting-edge technologies, and wide-ranging applications associated with micro/nano-scale optical devices for regulating light fields. We also delve into the prevailing challenges in the pursuit of developing viable technology for real-world applications. Furthermore, we offer insights into potential future research trends and directions within the realm of light field manipulation.
Photonics Insights
  • Publication Date: Dec. 29, 2023
  • Vol. 2, Issue 4, R09 (2023)
Coherent free-electron light sources|Story Video , On the Cover
Dongdong Zhang, Yushan Zeng, Ye Tian, and Ruxin Li
Free-electron light sources feature extraordinary luminosity, directionality, and coherence, which has enabled significant scientific progress in fields including physics, chemistry, and biology. The next generation of light sources has aimed at compact radiation sources driven by free electrons, with the advantages of reduction in both space and cost. With the rapid development of ultra-intense and ultrashort lasers, great effort has been devoted to the quest for compact free-electron lasers (FELs). This review focuses on the current efforts and advancements in the development of compact FELs, with a particular emphasis on two notable paths: the development of compact accelerators and the construction of micro undulators based on innovative materials/structures or optical modulation of electrons. In addition, the physical essence of inverse Compton scattering is discussed, which offers remarkable capability to develop an optical undulator with a spatial period that matches the optical wavelength. Recent scientific developments and future directions for miniaturized and integrated free-electron coherent light sources are also reviewed. In the future, the prospect of generating ultrashort electron pulses will provide fascinating means of producing superradiant radiation, promising high brilliance and coherence even on a micro scale using optical micro undulators.
Photonics Insights
  • Publication Date: Sep. 27, 2023
  • Vol. 2, Issue 3, R07 (2023)
Optical manipulation: from fluid to solid domains|Story Video , On the Cover
Qiannan Jia, Wei Lyu, Wei Yan, Weiwei Tang, Jinsheng Lu, and Min Qiu
Light carries energy and momentum, laying the physical foundation of optical manipulation that has facilitated advances in myriad scientific disciplines, ranging from biochemistry and robotics to quantum physics. Utilizing the momentum of light, optical tweezers have exemplified elegant light–matter interactions in which mechanical and optical momenta can be interchanged, whose effects are the most pronounced on micro and nano objects in fluid suspensions. In solid domains, the same momentum transfer becomes futile in the face of dramatically increased adhesion force. Effective implementation of optical manipulation should thereupon switch to the “energy” channel by involving auxiliary physical fields, which also coincides with the irresistible trend of enriching actuation mechanisms beyond sole reliance on light-momentum-based optical force. From this perspective, this review covers the developments of optical manipulation in schemes of both momentum and energy transfer, and we have correspondingly selected representative techniques to present. Theoretical analyses are provided at the beginning of this review followed by experimental embodiments, with special emphasis on the contrast between mechanisms and the practical realization of optical manipulation in fluid and solid domains.
Photonics Insights
  • Publication Date: Jun. 13, 2023
  • Vol. 2, Issue 2, R05 (2023)
Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly
Hyunjung Kang, Dohyeon Lee, Younghwan Yang, Dong Kyo Oh, Junhwa Seong, Jaekyung Kim, Nara Jeon, Dohyun Kang, and Junsuk Rho
Advancements in micro/nanofabrication have enabled the realization of practical micro/nanoscale photonic devices such as absorbers, solar cells, metalenses, and metaholograms. Although the performance of these photonic devices has been improved by enhancing the design flexibility of structural materials through advanced fabrication methods, achieving large-area and high-throughput fabrication of tiny structural materials remains a challenge. In this aspect, various technologies have been investigated for realizing the mass production of practical devices consisting of micro/nanostructural materials. This review describes the recent advancements in soft lithography, colloidal self-assembly, and block copolymer self-assembly, which are promising methods suitable for commercialization of photonic applications. In addition, we introduce low-cost and large-scale techniques realizing micro/nano devices with specific examples such as display technology and sensors. The inferences presented in this review are expected to function as a guide for promising methods of accelerating the mass production of various sub-wavelength-scale photonic devices.
Photonics Insights
  • Publication Date: May. 22, 2023
  • Vol. 2, Issue 2, R04 (2023)
Optical properties and polaritons of low symmetry 2D materials|Story Video , On the Cover
Shenyang Huang, Chong Wang, Yuangang Xie, Boyang Yu, and Hugen Yan
Low symmetry 2D materials with intrinsic in-plane anisotropic optical properties and high tunability provide a promising platform to explore and manipulate light–matter interactions. To date, dozens of in-plane anisotropic 2D materials with diverse band structures have been discovered. They exhibit rich optical properties, indicating great potential for novel applications in optics, photonics, and optoelectronics. In this paper, we thoroughly review the anisotropic optical properties and polaritons in many kinds of low symmetry 2D materials, aiming to elicit more research interest in this field. First, the optical properties of anisotropic 2D semiconductors, including interband absorption, photoluminescence, excitons, and band structure engineering for tuning optical responses, are introduced. Then fundamentals and advances in experiments of hyperbolic polaritons in anisotropic 2D materials, including phonon, plasmon, and exciton polaritons, are discussed. Finally, a perspective on promising research directions is given.
Photonics Insights
  • Publication Date: Mar. 31, 2023
  • Vol. 2, Issue 1, R03 (2023)
Meta-optics inspired surface plasmon devices|Story Video
Quan Xu, Yuanhao Lang, Xiaohan Jiang, Xinyao Yuan, Yuehong Xu, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xueqian Zhang, Jiaguang Han, and Weili Zhang
Surface plasmons (SPs) are electromagnetic surface waves that propagate at the interface between a conductor and a dielectric. Due to their unique ability to concentrate light on two-dimensional platforms and produce very high local-field intensity, SPs have rapidly fueled a variety of fundamental advances and practical applications. In parallel, the development of metamaterials and metasurfaces has rapidly revolutionized the design concepts of traditional optical devices, fostering the exciting field of meta-optics. This review focuses on recent progress of meta-optics inspired SP devices, which are implemented by the careful design of subwavelength structures and the arrangement of their spatial distributions. Devices of general interest, including coupling devices, on-chip tailoring devices, and decoupling devices, as well as nascent SP applications empowered by sophisticated usage of meta-optics, are introduced and discussed.
Photonics Insights
  • Publication Date: Mar. 31, 2023
  • Vol. 2, Issue 1, R02 (2023)